zhenbo

ISSN?0253-3782 CN?11-2021/P

台湾双冬断层近场脉冲型地震动的数值模拟

罗全波 ,? 陈学良 ,? 高孟潭 ,? 李铁飞

引用本文: 罗全波,?陈学良,?高孟潭,?李铁飞. 2019.?台湾双冬断层近场脉冲型地震动的数值模拟.?地震学报,?41(3):?377-390. doi: 10.11939/jass.20180103 shu
Citation:? Luo Quanbo,?Chen Xueliang,?Gao Mengtan,?Li Tiefei. 2019.?Numerical simulation of near-field pulse-like ground motion for the Shuantung fault in Taiwan region.?Acta Seismologica Sinica,?41(3):?377-390. doi: 10.11939/jass.20180103 shu

台湾双冬断层近场脉冲型地震动的数值模拟

摘要: 根据我国台湾地区西部的地质地貌特征和1999年集集MW7.6地震的震源参数,建立了三维速度结构模型和两类震源模型。基于地壳中断层的位错积累量和岩石破裂后应力应变的传播特性,采用三维有限差分法对双冬断层活动可能产生的近场脉冲型地震动进行了模拟研究。结果表明:走滑断层垂直于断层走向的水平分量和逆断层垂直分量的峰值速度较大;由方向性效应所产生的双向速度脉冲主要集中在垂直于断层滑动分量方向,而由滑冲效应所产生的单向速度脉冲则主要集中在平行于断层滑动分量的方向;受方向性效应和上盘效应的共同制约,近场脉冲型地震动呈不对称带状分布,速度脉冲多分布在距离走滑断层迹线15 km和逆断层迹线10 km的范围内;速度反应谱在断层面的覆盖范围内沿破裂方向逐渐增大,且速度脉冲可能会对大型建筑物产生严重的剪切破坏。受凹凸体特性的影响,地震波场显示南投、台中和苗栗处于强地震动危险区。

English

    1. 高孟潭,俞言祥,张晓梅,吴健,胡平,丁彦慧. 2002. 北京地区地震动的三维有限差分模拟[J]. 中国地震,18(4):356–364. doi: 10.3969/j.issn.1001-4683.2002.04.005

    2. Gao M T,Yu Y X,Zhang X M,Wu J,Hu P,Ding Y H. 2002. Three-dimensional finite-difference simulations of ground motions in the Beijing area[J]. Earthquake Research in China,18(4):356–364 (in Chinese).

    3. 贺秋梅. 2012. 地震动的速度脉冲对结构反应及结构减隔震性能影响研究[D]. 北京: 中国地震局地球物理研究所: 1?10.

    4. He Q M. 2012. Study on the Influence of Seismic Velocity Pulse on Structural Response and Isolation Properties[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 1?10 (in Chinese).

    5. 姜慧,黄剑涛,俞言祥,温增平. 2009. 地表破裂断层近场速度大脉冲研究[J]. 华南地震,29(2):1–9. doi: 10.3969/j.issn.1001-8662.2009.02.001

    6. Jiang H,Huang J T,Yu Y X,Wen Z P. 2009. Study on large velocity pulses near surface rupture faults[J]. South China Journal of Seismology,29(2):1–9 (in Chinese).

    7. 李晓轩. 2016. 速度脉冲提取与夹杂对地震动的影响研究[D]. 哈尔滨: 中国地震局工程力学研究所: 10?11.

    8. Li X X. 2016. Study on Extraction of the Velocity Pulse and Effects of Inclusion on Ground Motion[D]. Harbin: Institute of Engi-neering Mechanics, China Earthquake Administration: 10?11 (in Chinese).

    9. 李宗超,高孟潭,陈学良,吴清. 2019. 2016年熊本MJ7.3地震的工程地震动参数模拟及分布特征分析[J]. 地震学报,41(1):100–110.

    10. Li Z C,Gao M T,Chen X L,Wu Q. 2019. Engineering ground motion parameters simulation and distribution characteristics analysis of Kumamoto MJ7.3 earthquake in 2016[J]. Acta Seismologica Sinica,41(1):100–110 (in Chinese).

    11. 刘启方,袁一凡,金星,丁海平. 2006. 近断层地震动的基本特征[J]. 地震工程与工程振动,26(1):1–10. doi: 10.3969/j.issn.1000-1301.2006.01.001

    12. Liu Q F,Yuan Y F,Jin X,Ding H P. 2006. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Vibration,26(1):1–10 (in Chinese).

    13. 罗全波,陈学良,高孟潭,李宗超,李铁飞,张振. 2018. 近断层速度脉冲与震源机制的关系浅析[J]. 震灾防御技术,13(3):646–661.

    14. Luo Q B,Chen X L,Gao M T,Li Z C,Li T F,Zhang Z. 2018. Relationship between near-fault velocity pulse and focal mecha-nism[J]. Technology for Earthquake Disaster Prevention,13(3):646–661 (in Chinese).

    15. 潘波,许建东,关口春子,何宏林. 2006. 北京地区近断层强地震动模拟[J]. 地震地质,28(4):623–634. doi: 10.3969/j.issn.0253-4967.2006.04.010

    16. Pan B,Xu J D,Haruko S,He H L. 2006. Simulation of the near-fault strong ground motion in Beijing region[J]. Seismology and Geology,28(4):623–634 (in Chinese).

    17. 蒲武川,梁瑞军,戴枫禹,黄斌. 2017. 基于三角函数的脉冲型近场地震动的近似模型[J]. 振动与冲击,36(4):208–213.

    18. Pu W C,Liang R J,Dai F Y,Huang B. 2017. An analytical model for approximating pulse-like near-fault ground motions[J]. Journal of Vibration and Shock,36(4):208–213 (in Chinese).

    19. 王海云. 2004. 近场强地震动预测的有限断层震源模型[D]. 哈尔滨: 中国地震局工程力学研究所: 39?64.

    20. Wang H Y. 2004. Finite Fault Source Model for Predicting Near-Field Strong Ground Motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 39?64 (in Chinese).

    21. 王卫民,赵连锋,李娟,姚振兴. 2005. 1999年台湾集集地震震源破裂过程[J]. 地球物理学报,48(1):132–147. doi: 10.3321/j.issn:0001-5733.2005.01.019

    22. Wang W M,Zhao L F,Li J,Yao Z X. 2005. Rupture process of the Chi-Chi (Taiwan)earthquake in 1999[J]. Chinese Journal of Geophysics,48(1):132–147 (in Chinese).

    23. 谢俊举,温增平,李小军,李亚琦,吕红山,黄隽彦. 2012. 基于小波方法分析汶川地震近断层地震动的速度脉冲特性[J]. 地球物理学报,55(6):1963–1972.

    24. Xie J J,Wen Z P,Li X J,Li Y Q,Lü H S,Huang J Y. 2012. Analysis of velocity pulses for near-fault strong motions from the Wenchuan earthquake based on wavelet method[J]. Chinese Journal of Geophysics,55(6):1963–1972 (in Chinese).

    25. 徐龙军,谢礼立. 2005. 集集地震近断层地震动频谱特性[J]. 地震学报,27(6):656–665. doi: 10.3321/j.issn:0253-3782.2005.06.010

    26. Xu L J,Xie L L. 2005. Characteristics of frequency content of near-fault ground motions during the Chi-Chi earthquake[J]. Acta Seismologica Sinica,27(6):656–665 (in Chinese).

    27. 俞言祥,高孟潭. 2001. 台湾集集地震近场地震动的上盘效应[J]. 地震学报,23(6):615–621. doi: 10.3321/j.issn:0253-3782.2001.06.007

    28. Yu Y X,Gao M T. 2001. Effects of the hanging wall and footwall on peak acceleration during the Chi-Chi earthquake,Taiwan[J]. Acta Seismologica Sinica,23(6):615–621 (in Chinese).

    29. 袁一凡, 田启文. 2012. 工程地震学[M]. 北京: 地震出版社: 128?138.

    30. Yuan Y F, Tian Q W. 2012. Engineering Seismology[M]. Beijing: Seismological Press: 128?138 (in Chinese).

    31. Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501. doi: 10.1785/0120060255

    32. Benioff H. 1955. Mechanism and strain characteristics of the White Wolf fault as indicated by the aftershock sequence,earthquakes in Kern County,California during 1955[J]. Calif Div Mines Bull,171:199–202.

    33. Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001

    34. Carena S,Suppe J,Kao H. 2002. Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography[J]. Geology,30(10):935–938. doi: 10.1130/0091-7613(2002)030<0935:ADOTIB>2.0.CO;2

    35. Cattin R,Loevenbruck A,Le Pichon X. 2004. Why does the co-seismic slip of the 1999 Chi-Chi (Taiwan)earthquake increase progressively northwestward on the plane of rupture? [J]. Tectonophysics,386(1/2):67–80.

    36. Chen C H,Teng T L,Gung Y C. 1998. Ten-second Love-wave propagation and strong ground motions in Taiwan[J]. J Geophys Res,103(B9):21253–21273. doi: 10.1029/98JB00613

    37. Chen R Y,Kao H,Liang W T,Shin T C,Tsai Y B,Huang B S. 2009. Three-dimensional patterns of seismic deformation in the Taiwan region with special implication from the 1999 Chi-Chi earthquake sequence[J]. Tectonophysics,466(3/4):140–151.

    38. Chi W C,Dreger D,Kaverina A. 2001. Finite-source modeling of the 1999 Taiwan (Chi-Chi)earthquake derived from a dense strong-motion network[J]. Bull Seismol Soc Am,91(5):1144–1157.

    39. Dickinson B W,Gavin H P. 2011. Parametric statistical generalization of uniform-hazard earthquake ground motions[J]. J Struct Eng,137(3):410–422. doi: 10.1061/(ASCE)ST.1943-541X.0000330

    40. Hanks T C,Kanamori H. 1979. A moment magnitude scale[J]. J Geophys Res,84(B5):2348–2350. doi: 10.1029/JB084iB05p02348

    41. Heaton T H,Hall J F,Wald D J,Halling M W. 1995. Response of high-rise and base-isolated buildings to a hypothetical MW7.0 blind thrust earthquake[J]. Science,267(5195):206–211. doi: 10.1126/science.267.5195.206

    42. Hirasawa T,Stauder W. 1965. On the seismic body waves from a finite moving source[J]. Bull Seismol Soc Am,55:237–262.

    43. Irikura K,Miyakoshi K,Kamae K,Yoshida K,Somei K,Kurahashi S,Miyake H. 2017. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake[J]. Earth Planets Space,69(1):10. doi: 10.1186/s40623-016-0586-y

    44. Iwaki A,Morikawa N,Maeda T,Aoi S,Fujiwara H. 2013. Finite-difference simulation of long-period ground motion for the Sagami Trough megathrust earthquakes[J]. J Disaster Res,8(5):926–940. doi: 10.20965/jdr.2013.p0926

    45. Kawase H,Aki K. 1990. Topography effect at the critical SV-wave incidence:Possible explanation of damage pattern by the Whittier Narrows,California,earthquake of 1 October 1987[J]. Bull Seismol Soc Am,80(1):1–22.

    46. Li Z C,Gao M T,Jiang H,Chen X L,Li T F,Zhao X F. 2018. Sensitivity analysis study of the source parameter uncertainty factors for predicting near-field strong ground motion[J]. Acta Geophys,66(4):523–540. doi: 10.1007/s11600-018-0171-9

    47. Luo Q B,Chen X L,Gao M T,Li Z C,Zhang Z,Zhou D. 2019. Simulating the near-fault large velocity pulses of the Chi-Chi (MW7.6) earthquake with kinematic model[J]. J Seismol,23(1):25–38. doi: 10.1007/s10950-018-9791-4

    48. Ma K F,Wang J H,Zhao D P. 1996. Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan[J]. J Phys Earth,44(2):85–105. doi: 10.4294/jpe1952.44.85

    49. Murotani S,Miyake H,Koketsu K. 2008. Scaling of characterized slip models for plate-boundary earthquakes[J]. Earth Planets Space,60(9):987–991. doi: 10.1186/BF03352855

    50. Oglesby D D,Archuleta R J. 1997. A faulting model for the 1992 Petrolia earthquake:Can extreme ground acceleration be a source effect? [J]. J Geophys Res,102(B6):11877–11897. doi: 10.1029/97JB00475

    51. Somerville P,Irikura K,Graves R,Sawada S,Wald D,Abrahamson N,Iwasaki Y,Kagawa T,Smith N,Kowada N. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett,70(1):59–80. doi: 10.1785/gssrl.70.1.59

    52. Wang C Y,Chang C H,Yen H Y. 2000. An interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin-skinned thrust model[J]. Terr Atmos Ocean Sci,11(3):609–630. doi: 10.3319/TAO.2000.11.3.609(CCE)

    53. Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002.

    1. [1]

      杨迪雄 赵 岩 , 2010:?近断层地震动破裂向前方向性与滑冲效应对隔震建筑结构抗震性能的影响,?地震学报,?32,?579-587.

    2. [2]

      冯继威 ,?李山有 ,?宋晋东 , 2018:?2016年10月30日意大利MW6.6地震破裂方向性效应对地震动参数的影响,?地震学报,?40,?227-240. doi:?10.11939/jass.20170132

    3. [3]

      徐龙军1) 谢礼立1,2) , 2005:?集集地震近断层地震动频谱特性,?地震学报,?27,?656-665.

    4. [4]

      田玉基 杨庆山 卢明奇 , 2007:?近断层脉冲型地震动的模拟方法,?地震学报,?29,?77-84.

    5. [5]

      赵根模, 姚兰予, 马淑芹 , 1994:?断层位错引起的应力场变动与地震危险性预测 ,?地震学报,?16,?448-454.

    6. [6]

      徐龙军1,2)谢礼立2) , 2007:?近断层地震动双规准伪速度谱及其应用,?地震学报,?29,?512-520.

    7. [7]

      师皓宇 ,?马念杰 ,?石建军 ,?李楠 ,?马骥 , 2019:?应力增量触发断层岩体能量释放模拟与地震成因探讨—以龙门山断裂带为例,?地震学报,?41,?1-10. doi:?11939/jass.20180151

    8. [8]

      高孟潭 , 1993:?空间线性展布系统的地震危险性分析方法,?地震学报,?15,?347-352.

    9. [9]

      邵延秀 ,?袁道阳 ,?梁明剑 , 2015:?滇西南地区龙陵—澜沧断裂带地震危险性评价,?地震学报,?37,?1011-1023. doi:?10.11939/jass.2015.06.011

    10. [10]

      陶夏新1,2)王国新3) , 2003:?近场强地震动模拟中对破裂的方向性效应和上盘效应的表达.,?地震学报,?25,?191-198.

    11. [11]

      张瑞青1)魏富胜1)乔成斌2)林邦慧1) , 2005:?用(DDA+FEM)方法数值模拟1975年海城、1999年岫岩地震发生的过程l,?地震学报,?27,?163-170.

    12. [12]

      李宗超 ,?高孟潭 ,?陈学良 ,?吴清 , 2019:?2016年熊本MJ7.3地震的工程地震动参数模拟及分布特征分析,?地震学报,?41,?100-110. doi:?10.11939/jass.20180070

    13. [13]

      蔡永恩 赵志栋 , 2008:?利用流固耦合模型模拟地震和海啸全过程,?地震学报,?30,?594-604.

    14. [14]

      周云好 许力生 陈运泰 , 2002:?2000年6月4日印度尼西亚苏门答腊南部Mem>Ssub>8.0地震的震源机制,?地震学报,?24,?462-469.

    15. [15]

      廖振鹏, 李大华, 孙平善 , 1988:?中国地震烈度衰减的概率模型,?地震学报,?10,?146-163.

    16. [16]

      高孟潭, 贾素娟 , 1988:?极值理论在工程地震中的应用,?地震学报,?10,?317-326.

    17. [17]

      程 佳1) 刘 杰1) 甘卫军2) 李 纲1) , 2009:?汶川地震同震形变场对川滇地区主要活动断裂地震发生趋势的影响,?地震学报,?31,?477-490.

    18. [18]

      闻学泽 , 2018:?巴颜喀拉块体东边界千年破裂历史与2008年汶川、2013年芦山和2017年九寨沟地震,?地震学报,?40,?255-267. doi:?10.11939/jass.20170211

    19. [19]

      王振山 ,?魏东平 ,?徐佳静 ,?王少坡 , 2019:?走滑断层对洋中脊热结构与流动场的影响规律及对太平洋南部边界RRF型三联点的解释,?地震学报,?41,?1-13. doi:?10.11939/jass.20180009

    20. [20]

      伍剑波 ,?张慧 ,?苏鹤军 , 2014:?断层气氡在不同类型覆盖层中 迁移规律的数值模拟,?地震学报,?36,?118-128. doi:?10.3969/j.issn.0253-3782.2014.01.010.

  • 图?1? 研究区内断层分布和本文假设断层面在地表的投影

    Figure?1.? The distribution of faults (solid lines) in the studied area and the projection of the fault plane at the surface (dashed box) assumed in this paper

    图?2? 断层模型示意图

    Figure?2.? Sketch of the fault model

    图?3? 走滑断层(a)和逆断层(b)在多个台站的三分量速度时程

    Figure?3.? Three-component velocity time histories at the stations for strike-slip fault (a) and reverse fault (b)

    图?4? 走滑断层(a)和逆断层(b)上盘内的台站三分量峰值速度(PGV)沿垂直于断层走向的变化

    Figure?4.? Variation of three-component peak ground velocity (PGV) along the direction perpendicular to the fault strike at the stations of the hanging wall for strike-slip fault (a) and reverse fault (b)

    图?5? 走滑断层(蓝色实线)和逆断层(红色虚线)上盘内的台站三分量峰值速度(PGV)沿断层走向的变化

    Figure?5.? Variation of three-component peak ground velocity (PGV) along the fault strike on the hanging wall for strike-slip fault (blue solid line) and reverse fault (red dashed line)

    图?6? 真实地震和模拟地震的脉冲记录随断层距的分布

    Figure?6.? Distribution of pulse recordings with fault distance for the real earthquakes and simulated earthquakes

    图?7? 走滑断层(a)和逆断层(b)的峰值速度(PGV)等值线图

    Figure?7.? Peak ground velocity contour maps of strike-slip fault (a) and reverse fault (b)

    图?8? 走滑断层(a)和逆断层(b)在C5?J5台站的三分量速度反应谱

    Figure?8.? Three-component velocity response spectrum at the stations of C5?J5 for strike-slip fault (a) and reverse fault (b)

    图?9? 走滑断层在地震过程中不同时刻的地面运动波场快照

    Figure?9.? Snapshots of the wave field at different moments for the ground motion of strike-slip fault

    层序号 深度/km vP/(km·s?1 vS/(km·s?1 密度/(103 kg·m?3 Q
    1 2 4.66 2.57 2.25 250
    2 5 5.45 2.67 2.45 250
    3 10 5.76 2.88 2.55 300
    4 15 6.15 3.31 2.60 300
    5 25 6.71 3.72 2.90 500
    6 30 7.11 4.07 3.15 500

    表?1? 研究区域地壳参数

    Table?1.? Structure parameters for the studied area

    下载: 导出CSV
    地震名称 发震日期 MW 记录数
      帝王谷地震 1979?10?15 6.5 15
      北岭地震 1994?01?17 6.7 11
      集集地震 1999?09?21 7.6 26

    表?2? 真实脉冲型地震记录的参数

    Table?2.? Parameters of pulse-like earthquakes

    下载: 导出CSV
  • 加载中
图(10)表(2)
计量
  • PDF下载量:? 21
  • 文章访问数:? 607
  • HTML全文浏览量:? 253
  • 引证文献数:?0
文章相关
  • 通讯作者:? 陈学良, xueliang_chen@aliyun.com
  • 收稿日期:? 2018-09-04
  • 录用日期:? 2019-01-22
  • 网络出版日期:? 2019-05-01
通讯作者: 陈斌, bchen63@163.com
  • 1.?

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章
本系统由北京仁和汇智信息技术有限公司设计开发?技术支持:?info@rhhz.net 百度统计